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ABSTRACT 

The shape of profit and loss distribution of an investment is 

constantly evolving due to the changes in financial 

fundaments, noise, and shocks. Most value-at-risk models 

tend to utilize only up to the second moment of the returns 

distribution. This paper introduces the use of the sinh-

arcsinh distribution with time-varying parameters that are 

numerically estimated from the first four realized moments. 

Upon applying to the Philippine Stock Exchange Index 

returns series, the proposed methodology is less 

conservative but more efficient in capital allocation than 

the benchmark model TARCH-QMLE. Overall, the results 

show that the proposed methodology is promising in 

estimating market risk. 

 

Keywords: realized moments, sinh-arcsinh distribution, 

VaR,  expected shortfall. 
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1. Introduction 

Value-at-Risk (VaR) is one of the popular measures of risk in the financial industry. The 

VaR is the     quantile of the returns distribution. It is interpreted as the minimum value 

of the portfolio that is at risk given a maximum probability of   for a specified time 

horizon. Let    be the distribution of the returns series. The    VaR is the value   such 

that the probability that the return   is lower than   must be no larger than  , where 

(   ) is the confidence level.  

 

The VaR is formally defined as: 

 

        *     (   )   + (1) 

 

The usual values for   are 5% or 1% probabilities. Typical time horizons are one-day or 

ten-day VaR.  

 

Another popular measure of risk is the expected shortfall (ES). The ES is the average 

value of losses once the return breaches the VaR. The ES is formally defined as: 

 

    
 

 
∫   (  )  

 

 

  ( |      ) (2) 

  

where   (  ) is the quantile function of   . The ES is affected by the shape of the 

distribution at the tails. That is, a negatively-skewed leptokurtic distribution may have a 

higher ES than the Gaussian even if the two distributions have the same VaR.  

 

The usual distributional assumptions in measuring the VaR and ES are the Gaussian 

distribution and the leptokurtic Student’s t distribution. This assumption implicitly 

implies that at any given time period, the shape of the distribution is fixed with respect to 

its skewness and kurtosis, which is not the case in practice. In finance, a bull market 

implies higher occurrences of positive price changes and gains, while the reverse is 

observed during a bear market. In crisis periods, high volatility is coupled with high 
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probability of extreme losses and low probability of gains. Therefore, a symmetric 

distributional assumption does not suffice in describing financial data.  

 

The literature had been delving into the use of higher moments in modeling risk; these 

studies are summarized in Section 2 of this paper. This paper contributes to the literature 

by tweaking the shape of a flexible distribution, called the Sinh-Arcsinh Distribution, 

using the realized moments of the data. To forecast the risk measures, such as the VaR 

and ES, the local linear model is used, as discussed in Section 3. This paper uses the 

Philippine Stock Exchange Index (PSEi) in implementing the procedure. The PSEi series 

is divided for model estimation (insample) from 1985 to 2006, and model forecast 

performance verification (outsample) from 2007 to 2013. 

 

2. Realized Moments, VaR, and VAR 

2.1. Realized Moments 

The realized moments are a function of actual returns falling within an observation 

window or interval. For a time-interval  , denote the daily closing price, in logarithms, 

for intra-period   as     . The intra-period log-returns,     , is the difference between two 

succeeding log prices, given as                 ; log returns are common in the 

literature because of its mathematical tractability. Adapting the intra-period realized 

volatility of Andersen, Bollerslev, Diebold, & Labys, (2003) (henceforth ABDL), the 

realized variance for week  ,      , is the sum of the intra-week daily returns, given by: 

 

      ∑    
 

 

   

 (3) 

 

where    , for a 5-day trading schedule. The realized volatility is defined as the 

square-root of the realized variance scaled by the number of intra-time periods: 

 

    √
 

 
      (4) 
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Amaya, Christoffersen, Jacobs, & Vasquez (2015) (henceforth ACJV) computed the 

realized skewness and kurtosis from the sum of the third and fourth power, respectively, 

of the intra-period returns, scaled by the realized variances. Following ACJV, the realized 

skewness,    , and kurtosis,    , are computed by: 

 

    
∑     

  
   

     
   

 (5) 

    
 ∑     

  
   

     
  (6) 

 

ACJV showed that the realized moments converge in mean square to the integrated 

moments. They also showed that the realized higher moments augment the information 

measured by the realized volatility; the realized skewness captures the direction of the 

abrupt change in equity prices, while the realized kurtosis measures the possible 

magnitude of the change. 

 

2.2. Modeling Realized Moments 

ACVJ (2015) analyzed the effects of realized volatility, skewness and kurtosis on weekly 

equity returns. The authors observed that realized skewness has a negative impact on next 

week’s stock returns, and realized kurtosis has a positive effect on next week’s stock 

return. They noted that realized volatility and stock returns do not have a strong 

relationship, when weekly returns were regressed by the realized moments following 

Fama and MacBeth (1973): 

 

                                                    
             (7) 

 

 

 

where      is a vector of other explanatory variables for the returns. 
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ABDL (2003) related the realized volatilities of Deutschemark, Yen and Dollar exchange 

rates using the vector autoregressive models (Sims, 1980), called as VAR-RV. The 

authors showed that the VAR-RV is superior to other commonly used approaches, such 

as the J.P. Morgan’s 1997 RiskMetrics, VAR models on returns, AR model on realized 

volatilities, GARCH(1,1) model, etc.  Cayton and Mapa (2015) also modeled the realized 

moments using the Johnson-SU distribution, a distribution that is also parametrized by 

higher moments. 

 

ABDL (2001) observed that the realized volatilities are non-normal, and has long-

memory dynamics. Studies of Chow et. al. (2009) on the realized volatility of index 

constituent stocks in Hong Kong, and Thomakos & Wang (2003) on the futures market, 

noted the long-memory dynamics of the realized volatility, despite the returns being 

serially uncorrelated. With these concerns, the popular approach is to model the 

fractionally differenced realized volatility using ARFIMA. On a similar note, Goncalves 

& Meddahi (2011) applied the Box-Cox transformation to the realized volatility to 

address the skewness of its distribution. They suggested the use of the inverse of the 

realized volatility, known as the realized precision, to control the coverage probability of 

95% level for integrated volatilities, which is crucial in VaR analysis. 

 

The convergence results assumed that the high-frequency returns are error free. However, 

actual high-frequency returns suffer from microstructure noise (Andreou & Ghysels, 

2002; Bai, Russell, & Tiao, 2008). ACJV (2015) showed that the realized volatility is 

dominated by microstructure noise as the sampling frequency increases, and that the 

realized volatility and realized kurtosis only have a small and insignificant bias that does 

not increase with the sampling frequency. It is recommended in the literature to smoothen 

the realized volatilities to minimize the effects of measurement error. A popular approach 

is to subject the realized volatilities to a filtering model that factors out the microstructure 

noise. Barndorff-Nielsen & Neil (2002), & Meddahi (2002) used the stochastic volatility 

model, while ABDL (2003) recommended the use of a parsimonious ARMA model. 

Goncalves & Meddahi (2009) addressed the problem differently by bootstrapping the 

realized volatilities.  
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2.3. The Sinh-Arcsinh Distribution 

To obtain a more accurate measure of the VaR and ES, the return distribution must be 

flexible for changes in the skewness and kurtosis of the returns series. Jones & Pewsey 

(2009) developed the sinh-arcsinh transformation of a normally distributed random 

variable, yielding a distribution having four parameters that controls directly the location, 

scale, skewness, and kurtosis. The sinh-arcsinh distribution boasts mathematically 

tractable properties that increase the ease of matching the distribution’s moments with the 

predicted realized moments. Following the notation of the authors, let   and      follow 

the standard normal distribution   and the standardized sinh-arcsinh distribution     , 

respectively. The sinh-arcsinh transformation is given by: 

 

       *       (     )   + (8) 

 

where   and   are the skewness and kurtosis parameters, respectively. The distribution of 

      is given by: 

    ( )  *  (    )+ 
 
      ( )    *     

 ( )  + (9) 

 

where     ( )  {      
 ( )}

   
. The moments of the standardized sinh-arcsinh 

distribution is  (    
 )  

 

  
∑ (

 
 
) (  )     {(    )

 

 
} 

   , giving us the first four 

moments: 

 (    )      (   )       (10) 

 (    
 )  

 

 
{     (    )       } (11) 
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where    
   ⁄

(  )  ⁄ { (   )  (   )   (   )  (   )} having   ( ) as the modified 

Bessel function of the second kind.
1
 Note that the first four moments are completely 

determined by the two parameters   and  . 

 

2.4. Local Level Model 

The local level model (Shephard and Harvey, 1990) was used in this paper to generate the 

one-step ahead forecasts of the realized moments. The local level model is a univariate 

model that utilizes only the historical movement of the realized moments. It also treats 

the realized moments independent of each other as the forecasting of one realized 

moments does not include information about the movements of the others moments. The 

local level model for a time-series    is given by:  

            (    
 ) (14) 

            (    
 ) (15) 

 

where    is a latent variable,    and    are random fluctuations with zero means and 

variances   
  and   

 , respectively. When modeling realized moments, the local level 

model estimates    of each realized moment, which is the level of the realized moment at 

a particular point in time. The dynamic and stochastic properties of the model enable the 

forecasting and calculation of prediction intervals. The model is usually represented in 

state-space form and estimated using Kalman Filter. 

 

2.5. Evaluation of VaR Methods 

Cayton and Mapa (2015) provided a summary of various methods in comparing the 

performance of VaR models. Basel (1996) recommended to determine the number of 

exceptions, which is the number of times where the actual risk is beyond the VaR. The 

capital allocation as buffer for market risk is adjusted based on the number of exceptions. 

                                                           
1 The modified Bessel functions of the first and second kind are: 

  ( )  ∑
 

   (     )
(
 

 
)
    

 
    and   ( )  

 

 
{
   ( )   ( )

    (  )
}, respectively. 
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If the VaR method incurs a high number of exceptions, then the capital allocation must be 

scaled upward. Table 1 gives the Basel scaling factors for capital allocation for various 

VaR exceptions for 250 trading days, and the scaling factors for a 52 and 53 weeks that 

will be used in this paper. 

Table 1. Test of Unconditional Coverage 

Number 
of 

Exceptions 
(Days or 
Weeks) 

 
250 Days 

 
52 Weeks 

 
53 Weeks 

  
% of 

Exceptions 

Scaling 
Factor for 

the Market 
Risk Capital 

  
% of 

Exceptions 

Scaling 
Factor for 

the Market 
Risk Capital 

  
% of 

Exceptions 

Scaling 
Factor for 

the Market 
Risk Capital 

1 
 

0.40 3 
 

1.923 3 
 

1.887 3 

2 
 

0.80 3 
 

3.846 3.6 
 

3.774 3.6 

3 
 

1.20 3 
 

5.769 4 
 

5.660 4 

4 
 

1.60 3 
      5 

 
2.00 3.4 

      6 
 

2.40 3.5 
      7 

 
2.80 3.65 

      8 
 

3.20 3.75 
      9 

 
3.60 3.85 

      10 
 

4.00 4 
       

2.5.1. Likelihood Ratio Tests 

Several likelihood ratio tests were developed by Christoffersen (1998) based on the 

number of exceptions. The first is the Unconditional Coverage test, which tests if the 

proportion of exceptions is equal to the desired risk probability, with test statistic given 

by: 

         (((   ̂)(   ))
    

(
 ̂

 
)
  

)  ( )
  (16) 

 

where  ̂       is the proportion of VaR exceptions,    is the number of VaR 

exceptions, and   is the number of data points, for a given validation period. The 

rejection of the null hypothesis implies that the actual risk coverage is greater than the 

desired. 

 

The second is the test of independence, which determines if the VaR exceptions are 

clustering through time. If the VaR exceptions exhibit clustering, then the violations are 
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dependent through time and are affected by volatility clustering. The test statistic is given 

by: 

          (
(   ̂ )

    ̂ 
   (   ̂ )

    ̂ 
   

(   ̂ )        ̂ 
       

)   ( )
  (17) 

 

where  ̂      (       ),     is the number of two consecutive periods with no 

exceptions,     number of periods with no exceptions followed by an exception,     

number of periods with exceptions followed by no exceptions, and     number of two 

consecutive days with exceptions. Rejection of the null hypothesis implies that the VaR 

method suffers from exception clustering.  

 

2.5.2. VaR Methodology Quality Statistics 

The third is the test for conditional coverage, which is a joint test of the unconditional 

coverage and independence. The test statistic is given by: 

 

                 ( )
  (18) 

 

Rejection of the null implies that the actual risk is higher than the desired risk.  

 

The other set of evaluation measures is composed of statistics that describe some 

qualities of the VaR approach. The first quality is conservatism that is measured by the 

mean relative bias (MRB) by Engel and Gizycki (1999). The MRB statistic is given by: 

 

     
 

 
∑

        ̅̅ ̅̅ ̅̅
 

   ̅̅ ̅̅ ̅̅
 

 

   

 (19) 

 

where    ̅̅ ̅̅ ̅̅
  ∑      

 
   , where   *     + indicates the     VaR methodology out 

of   approaches. The higher the MRB implies that the methodology is more conservative 

than the other approaches.  
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The second quality is accuracy which is measured by the average quadratic loss function 

(AQLF) also proposed by Engel and Gizycki (1999). The AQLF formula is given by: 

     
 

 
∑ (       )

 

   

 (20) 

 (       )  {
  (       )

                  
                                                    

 (21) 

 

A lower AQLF implies more accurate VaR methodology in accounting potential losses 

than the others.  

 

The third is a measure for efficiency, which is the average market risk capital (AMRC) 

by Basel (1996). The formula of the AMRC is given by: 

     
 

 
∑    [ 

 

  
∑     

    

     

       ]

 

     

 (22) 

 

where   is the scaling factor for market risk Capital from Table 1. A low AMRC implies 

low risk capital needed to be allocated.   

 

3. VaR Using the Modeling Realized Volatility and Sinh-Arcsinh Distribution 

This section discusses the procedure in measuring the VaR using the realized moments 

and the Sinh-Arcsinh distribution.  

 

1. The realized moments are computed from the intra-period returns using the 

Equations (4), (5) and (5). 

2. The local level model is used to forecast the realized moments. 

3. The parameters   and   of the sinh-arcsinh distribution are numerically 

determined by solving the following equations: 

  
 (    

 )         

  
 (23) 
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 (    

 )                

  
 (24) 

 

where   and   are the realized mean and volatility of the series, respectively, 

within a given observation window. 

 

4. The        is computed using the quantiles of the normal distribution expressed 

as  ( )   , where   is the normal distribution function. Substitute the VaR in 

the sinh-arcsinh transformation given by Equation (8) to get: 

 

 (    *       (    )   +)    (25) 

 

Solving for      yields: 

         {
      (   ( ))   

 
} (26) 

 

where     is the quantile function of the normal distribution. 

 

The data used in this paper is the daily closing value of the PSEi from January 2, 1985 to 

December 29, 2017, translating to 8,608 daily observations excluding weekends. The 

realized moments are computed using the daily intra-week data. The data is divided into 

the training dataset, which spans from 1985 to 2007 for a total of 1,148 weeks, and the 

validation dataset, which spans from 2007 to 2017 for a total of 574 weeks. All in all, 

there is a total of 1,722 weeks in the series. The validation period was selected because it 

captures the 2007 global financial crisis. Conclusions based on the results are applicable 

only to modeling the weekly PSEi returns. 

 

The VaR approach using the realized moments and the sinh-arcsinh distribution, 

henceforth RM, will be compared with the threshold autoregressive conditional 

heteroskedasticity model, henceforth TARCH, as benchmark. The expected shortfall, 
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likelihood ratio tests and the VaR quality statistics will be computed for the two 

methodologies. 

 

4. Results 

4.1. PSEi Stylized Facts 

The PSE Composite Index (PSEi) is the main market index of the Philippine Stock 

Exchange. It is the weighted average price of 30 listed stocks, selected to represent the 

general movement of the market. The composition of the 30 companies may change 

depending on the company fundamentals, as assessed by the PSE.  

     
Figure 1. Daily Closing Value of PSEi 
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Figure 1 displays the daily closing value, in levels and logarithms, of the PSEi; the 

shaded area corresponds to the validation dataset. It is noteworthy to mention the large 

downward trend induced by the 1989 Coup Attempt, 1991 Gulf War Crisis, 1997 Asian 

Financial Crisis, and the 2008 Financial Crisis. Signs of market recovery is evident after 

the Asian Financial Crisis, but was reversed due to the 2000 DotCom Crisis and 
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September 11, 2001 attack.
2
 The sample also covers the credit rating upgrade of the 

Philippines to investment grade by Fitch Ratings as announced on March 28, 2013. The 

shaded region from 2007 to 2017 is the validation period for the VaR approaches. 

 

The intra-week realized moments are computed from the daily PSEi returns, for a total of 

1424 datapoints. Figure 2 gives the graph of the realize moments. As expected, the higher 

realized moments are dominated by market noise. The movement of the realized 

skewness and kurtosis are indiscernible; nonetheless, the crisis periods register on the 

realized volatility graph. 

Figure 2. Weekly PSEi Realized Moments 
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The largest single-day decline in the PSEi was on December 11, 1989, where the index 

suffered week-on-week decrease of around 27%, after stock market trading was halted 

for more than one week because of the December 1989 Coup Attempt. The maximum 

week-on-week increase of around 19% is attributed to the February 1986 People Power 

                                                           
2
 Aquino (2004) provides a comprehensive list explaining the shocks or irregularities that affected the PSEi 

from July 1987 to May 2004. 
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Revolution ousting President Ferdinand Marcos. On the graph of the realized volatility, 

the isolated spike on January 22, 2001 is due to the ousting of President Joseph Ejercito 

Estrada, which was replaced by then Vice President Gloria Macapagal Arroyo. The spike 

on the realized volatility on October 27, 2008 was due to the Financial Crisis that led to 

the decline of East Asian stock prices led by large Asian markets of Hong Kong and 

Japan. The realized skewness and kurtosis exhibit high variance that inhibits the 

visualization of its movements. 

 

Figure 3. Histogram of PSEi Weekly Realized Moments 
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Figure 3 gives the histograms of the realized moments of the PSEi. The distribution of the 

returns is almost symmetric but with high kurtosis, as expected with financial returns 

data. The realized volatility & realized kurtosis distributions are highly skewed, while the 

distribution of the skewness seems to be double-peaked. Getting the logarithms of the 

two realized moments reduces the skewness of their distributions, as seen in Figure 4. 

The reduction in skewness would help improve the forecasting performance of the local 

level model.  
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Figure 4. Histogram of Realized Volatility and Kurtosis (in Logarithm) 
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The distribution of the realized skewness seems to have a bimodal distribution. Figure 5 

displays the realized volatility distribution for positive and negative PSEi returns. A 

negative realized skewness is evident for negative PSEi returns; while a positive realized 

skewness is observed for positive PSEi returns. 

 

Figure 5. Histogram of Realized Skewness of Positive and Negative PSEi Returns 
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As also observed by other studies that the realized moments are dominated by noise, the 

realized moments were smoothed to visualize their movements. Smoothing procedure 

shows the hidden cycles of the realized moments through time as the economy moves 

from a tranquil to a crisis state. Figure 6 graphs the Holt-Winters Exponential Smoothing 

and its corresponding Hodrick-Prescott Filter of the PSEi’s realized moments. We see 

from the HP filtered series of the realized skewness that it is on the negative side of zero 

only during around 1997-1998, 2000-2001, 2008, and 2015-2016, which are crisis 

periods as defined earlier, except for the 2015-2016 period. There is an increase in the 

realized volatility and realized kurtosis during 1997-1998 and 2998 crises periods. The 
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negative 2000-2001 negative skewness episode only registered an upward nudge to the 

kurtosis and not on the volatility. The 2015-2016 period is remarkable as it is the only 

negative skewness period with no drastic change in the other moments.  A combination 

of a positive skewness and, a low volatility and kurtosis, can be seen during bull market 

or upward market rally. The reverse can be seen during bear market or downward market 

rally. 

 

Figure 6. Weekly PSEi Realized Moments: Holt-Winters Exponential Smoothing with HP Filter 
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Despite the exponential smoothing producing a good graphical representation of the 

realized moments’ movement, it is not recommended to use the smoothened series as an 

input to an autoregressive model. The exponential smoothing procedures force the series 

to be correlated with its previous values, since past values are given exponentially 

decaying weights.  
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4.2. Local Level Model Results 

The local level model weekly one-step ahead forecasts of the realized moments for the 

validation period 2007 to 2017 are presented in Figure 7. The upper limit of the 99% 

prediction interval of the realized volatility and kurtosis were extracted to have a 

conservative estimate of the VaR. The upward adjustment was also made to consider the 

highly volatile nature of the realized moments.  

 

Figure 7. Weekly PSEi Realized Moments: Local Linear Smoothing (2007-2017) 
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4.3. Numerical Estimation of Sinh-Arcsinh Parameters 

The   and   parameters of the sinh-arcsinh distribution were numerically estimated by 

solving the system of Equations (23) and (24). Figure 8 gives the movement of the 

parameters from 2007 to 2017. The numerical estimation of the parameters for all periods 

is successful in finding the solution to the system of equations, yielding the RHS of the 

system virtually equal to the LHS. Note that the movement of the parameters has some 

resemblance to that of the one-step ahead realized moment forecasts, especially on 

periods with drastic changes. However, the two parameters do not uniquely represent the 
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movement of a single realized moment as the moments are nonlinear functions of the 

parameters.  

 

Figure 8. Sinh-Arcsinh Estimated Parameters (Weekly; 2007-2017) 
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4.3 Value-at-Risk Assessment 

The one-period ahead 1% VaR was calculated by getting the 1% quantile of the sinh-

arcsinh distribution given the estimated parameters for each period. Figure 9 shows the 

actual weekly PSEi return series and the VaR using the realized moments and sinh-

arcsinh distribution, denoted by VaR RM in the graph. It also shows the VaR calculated 

using a TARCH model estimated using quasi-maximum likelihood estimation (QMLE) 

as the benchmark model, denoted by VaR TARCH.  

 

The VaR RM is generally higher than the VaR TARCH. This implies the realized 

moments and the sinh-arcsinh distribution gives lower expected losses than the TARCH-

QMLE generally across the validation sample. The lower estimated VaR translates to 

lower capital allocation for reserves as buffer for volatile investments. This leads to 

higher liquidity and more capital for investing in higher yielding assets. It can also be 

observed that the VaR RM is more sensitive to shocks, as a single shock, say at the start 

of 2013, lead to a sustained higher VaRs in the subsequent period than that of the VaR 

TARCH. Also, the presence of a substantial shock makes the VaR RM lower than the 

VaR TARCH. Nonetheless, the VaR RM is also quick to taper-off and increase toward 

zero if a shock was not sustained. A number of exceptions or VaR violations can be 

observed during the crisis period of 2007 to 2008 for both approaches. 
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Figure 9. Returns Series and VaRs (Weekly; 2007-2017) 
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Table 2 lists the summary statistics of the exceptions for the two approaches; the table 

includes the number of weeks per year, the number of exceptions, and the proportion of 

exceptions by year. It could be noticed that the VaR RM has generally more exceptions 

or VaR violations during the crisis period of 2008: 4 exceptions as against 2 under the 

TARCH. The approach also has exceptions for years 2010, 2012, and 2016 where the 

TARCH experienced no exceptions. A VaR violation of 1 instance is equivalent to 

1.923% given a 52-week year, which is higher than the coverage probability of 1%. In 

total, the percentages of exceptions are 1.7% and 0.87% for the RM and TARCH 

approaches, respectively. 

 

Table 2. Summary Statistics of VaR Exeptions 

Year 
N Exception % of Exceptions 

RM TARCH RM TARCH RM TARCH 

2007 52 52 2 2 3.846 3.846 

2008 53 53 4 2 7.547 3.774 

2009 52 52 0 0 0.000 0.000 

2010 52 52 1 0 1.923 0.000 

2011 52 52 1 1 1.923 1.923 

2012 52 52 1 0 1.923 0.000 
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Year 
N Exception % of Exceptions 

RM TARCH RM TARCH RM TARCH 

2013 53 53 0 0 0.000 0.000 

2014 52 52 0 0 0.000 0.000 

2015 52 52 0 0 0.000 0.000 

2016 52 52 1 0 1.923 0.000 

2017 52 52 0 0 0.000 0.000 

Total 574 574 10 5 1.742 0.871 

 

Table 3 shows the test of unconditional coverage results by year. Years with no 

exceptions have undefined LR test statistic, and cannot be tested for unconditional 

coverage. The testable years under the TARCH have p-values greater than any usual level 

of significance, implying that the proportions of exceptions in Table 2 are not 

significantly different from the desired risk probability of 1%. Such is also the case for 

the RM except for the year 2008 where the percentage of exceptions reached to 7.5%. 

Overall, the actual proportion of exceptions is not significantly different from the desired 

across the validation sample. 

 

Table 3. Test of Unconditional Coverage 

Year 
RM TARCH 

LR p-value LR p-value 

2007 2.471 0.116 2.471 0.116 

2008 9.464 0.002 2.414 0.120 

2009 - - - - 

2010 0.352 0.553 - - 

2011 0.352 0.553 0.352 0.553 

2012 0.352 0.553 - - 

2013 - - - - 

2014 - - - - 

2015 - - - - 

2016 0.352 0.553 - - 

2017 - - - - 

Total 2.615 0.106 0.101 0.751 

 

Table 4 shows the performance of the two methodologies in terms of conservatism, 

accuracy, and efficiency. The MRBs for the RM are the negative MRBs of the TARCH 

because there are only two models being compared. The RM has negative MRB except 
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for 2007, which gradually reduced in value until 2012. Overall, the lower MRB of the 

RM implies that it is less conservative than the TARCH.  

 

The AQLF gives the same results as the proportion of exceptions in Table 2. The RM has 

an AQLF that is twice than that of the TARCH, which implies that the TARCH is more 

accurate than the RM. However, this statistic is only computed for years 2007, 2008 and 

2011 when both the RM and TARCH AQLFs are nonzero. Due to the small sample size, 

the AQLF may not be able to represent VaR performance accuracy.  

 

Overall, the AMRC of the TARCH is more than that of the RM by about 20%. This 

implies that the RM has lower allocation of risk capital than the TARCH on average. This 

is also true across all years in the validation sample, except for the year 2007. Generally, 

the lower AMRC implies that the use of RM frees-up reserve capital that can be 

converted into higher yielding investments, as compared to the TARCH. 

 

Table 4. Statistical Measures for VaR Comparison 

Year 
 

Conservatism (MRB) 
 

Accuracy (AQLF) 
 

Efficiency (AMRC) 

 
RM TARCH TARCH/RM 

 
RM TARCH TARCH/RM 

 
RM TARCH TARCH/RM 

2007 
 

0.009 -0.009 1.000 
 

0.038 0.039 1.00 
 

0.261 0.250 0.958 

2008 
 

-0.049 0.049 1.000 
 

0.076 0.038 0.50 
 

0.265 0.293 1.103 

2009 
 

-0.077 0.077 1.000 
 

0.000 0.000 - 
 

0.279 0.308 1.102 

2010 
 

-0.116 0.116 1.000 
 

0.019 0.000 0.00 
 

0.170 0.213 1.250 

2011 
 

-0.126 0.126 1.000 
 

0.019 0.019 1.00 
 

0.177 0.222 1.257 

2012 
 

-0.153 0.153 1.000 
 

0.019 0.000 0.00 
 

0.158 0.203 1.283 

2013 
 

-0.046 0.046 1.000 
 

0.000 0.000 - 
 

0.195 0.208 1.069 

2014 
 

-0.191 0.191 1.000 
 

0.000 0.000 - 
 

0.137 0.198 1.447 

2015 
 

-0.164 0.164 1.000 
 

0.000 0.000 - 
 

0.133 0.187 1.406 

2016 
 

-0.123 0.123 1.000 
 

0.019 0.000 0.00 
 

0.166 0.212 1.279 

2017 
 

-0.196 0.196 1.000 
 

0.000 0.000 - 
 

0.142 0.197 1.389 

Average 
 

-0.112 0.112 1.000 
 

0.017 0.009 0.50 
 

0.188 0.226 1.203 

 

4.4. Expected Shortfall 

Figure 9 shows the expected shortfall and the VaR of the two methodologies. It can be 

observed that the expected shortfall of the RM is closer to the VaR than that of the 

TARCH. This implies that the expected losses of the RM, given that the VaR is breached, 
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are less than that of the TARCH. This result is achieved because of the flexibility of the 

sinh-arcsinh distribution to changes in the skewness and kurtosis. 

 

Figure 9. VaR and Expected Shortfall (Weekly; 2007-2017) 
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5. Conclusion 

This paper introduces the use of the sinh-arcsinh distribution evaluated using the realized 

moments in estimating the VaR of the PSEi. Results show that the proposed methodology 

is generally better than the benchmark model TARCH-QMLE. The proposed 

methodology has higher number of VaR exceptions during times of crisis, particularly in 

2007 and 2008. There are also several other VaR exceptions that are within the 

acceptable thresholds. Moreover, the proposed model is less conservative and more 

efficient in allocating capital than the benchmark. The proposed model also has lower 

expected shortfall in absolute value than the benchmark model, implying lower expected 

losses during instances of VaR exceptions.  

 

These conclusions are applicable only to the PSEi returns series. Further studies must be 

done to assess the performance of the proposed methodology. Nonetheless, the proposed 

methodology is promising in estimating market risk. Improvements can be done in the 

forecasting of the realized moments to include dynamic interrelationships, and to 

distinguish and cancel out the noise from the signal. Moreover, modeling the realized 

skewness can be improved by incorporating asymmetric effects.  
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