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Executive Summary 
In the Philippines, most researchers rely on NWP models such as the WRF model in order to 

predict future weather conditions. In this study, however, the possibility of using a purely 

statistical multivariate model that does not rely on any NWP model is explored. This study 

focuses on using a multivariate ARMA model that assumes different AR and MA orders for each 

series in order to model the 2001 - 2015 precipitation, minimum, and maximum temperature data 

of Nueva Ecija. The data that was used in the analysis came from the two weather stations of 

PAGASA in the province which are the Cabanatuan and CLSU Munoz stations. Thus, there is a 

total of six series included in the analysis. In this study, forecasts were generated and their 

forecasting accuracy were subsequently measured. Results showed that the forecasts of the 

model had yearly MAPE and MASE values ranging from about 2.8% to about 3.2% and about 

0.8448 to about 1.0307, respectively, which are attributes of “good” forecasts according to their 

respective “rules-of-thumb”. A comparison of numerical measures for the multivariate ARMA 

model and their counterparts with the WRF model was then performed for three different 

scenarios. These scenarios detail the performance of the two models for monthly forecasting and 

extreme event and non-extreme event forecasting. Results revealed that the multivariate ARMA 

model had smaller values for almost all yearly and monthly numerical measures with substantial 

differences present in some of these measures. The same result was also found for the majority 

of the numerical measures under the non-extreme event scenario. For the extreme event case, 

results showed that neither the multivariate ARMA forecasts nor the WRF forecasts may be 

considered as good forecasts. Thus, for this scenario, it was concluded that the use of both the 

multivariate ARMA and WRF forecasts was deemed to be more appropriate as compared to 

using just one of them.  
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I. Introduction 

 

In modern society, weather forecasting has become a very useful tool since it helps 

provide information regarding future weather conditions. The application of weather forecasting 

is numerous. For example, it could be used in agricultural planning since it provides estimates of 

future weather conditions which could be used for crop planting. For policy making, the same 

information could be used to make better and timelier decisions; for example, politicians may 

use it in order to determine if a particular area should be evacuated or not. 

 

For this study, it is of interest to forecast future weather conditions for the Philippine 

province of Nueva Ecija. Nueva Ecija is situated in Region III, which is acknowledged as the 

“Rice Granary of the Philippines”, and is very important to the country since it is one of its 

biggest producers of paddy rice (Department of Trade and Industry, n.d.). In this area, weather 

forecasting is particularly useful since it helps provide information that concerns rice production. 

It is well known that the weather of any particular area has a strong effect on the capability of 

that area to produce rice (Lansigan, de los Santos, & Colladilla, 2000; Lansigan & Salvacion, 

2007; Koide, Robertson, Ines, Qian, DeWitt, & Lucero, 2013). Numerous studies have shown, 

such as that of Lansigan, de los Santos, and Coladilla (2000), that weather and climate directly 

affect plant yield and that any fluctuations in these two will greatly affect crop growth and yield. 

Due to this, performing weather forecasting in this province may also help in ascertaining food 

security. 

 

In this study, three weather variables are of interest; which were chosen due to their 

importance in crop production. These three are precipitation, minimum temperature, and 

maximum temperature. Forecasting these weather variables may be performed in numerous 

ways. However, only objective weather forecasting was focused on in this study. In this field, 

there are two predominant methods that are commonly used. The first being the Numerical 

Weather Prediction (NWP) method and the second being the statistical weather forecasting 

method.  

 

In the Philippines, the weather forecasting techniques that the Philippine Atmospheric, 

Geophysical, and Astronomical Services Administration (PAGASA) employs are either NWP 

models, such as the Weather Research and Forecasting (WRF) model, or are mixtures of NWP 

models and statistical models. However, there are many complications that may be encountered 

when using such methods; which have already been pointed out by numerous authors. First, 

Ihshaish, Cortes, and Senar (2012) and Wilks (2011) pointed out that the initial condition of the 

atmosphere that is used in NWP models is “estimated only within a certain accuracy” and that 

the assumed initial state may differ from the true initial state of the atmosphere. Wilks (2011) 

explained this by saying that these NWP models “do not contain complete and true 

representation of the governing physics” that explain the atmosphere. Malone (1955) also 



affirmed the same sentiments and further discuss that these NWP models are used even though 

there is “an incomplete marshaling and even understanding of all the factors” that are important 

in weather forecasting. This entails that the forecasts of these NWP models are already subject to 

error starting at the initialization stage. This problem, however, could be easily solved by the 

calibration of these NWP models (F. Lansigan, personal communication, December 12, 2017). 

Nevertheless, Wilks (2011) pointed out that the assumed state of the atmosphere will almost 

never be the same as the true state of the atmosphere since the information regarding the true 

state of the atmosphere is always incompletely observed.  

 

 Furthermore, Ihshaish, Cortes, and Senar (2012) declared that the forecast skill of these 

NWP models is sensitive to the specified initial condition. Wilks (2011) further explained this by 

discussing the concept of dynamical chaos. The concept of dynamical chaos mainly revolves 

around the idea that a deterministic dynamical system, such as the dynamic models used in the 

NWP approach, is very sensitive to the assumed conditions the system is initialized from. The 

author explains further and supposes that there are two possible realizations of the initial 

conditions that may be used to represent the atmosphere: one of which is the condition of the real 

atmosphere and the other is a perfect mathematical model of the physics governing the 

atmosphere. The author explained that if there are even slight differences in these two 

realizations, then their “time evolutions will diverge markedly”.  

 

 Finally, Wilks (2011) also discussed that these dynamical models may not be able to 

cover the “small-scale effects (e.g. of topography or small bodies of water) that may be 

important to local weather forecasting”. That is, these models are not able to explicitly represent 

the effect of variables such as location, gradual elevation of the terrain, proximity to bodies of 

water, etc. in the forecasting procedure. This problem may be amplified when used for the 

Philippines due to the island topography of the country and its weather conditions may be “very 

poorly represented by coarse GCM models” (Robertson, Qian, Tippett, Moron, & Lucero, 2012).  

 

These problems may all be encountered when using NWP models. Due to this possibility, 

other methods should be considered so as to mitigate the risk of committing errors. Additionally, 

the comparison of multiple weather forecasts may also be useful as it can help verify the 

credibility of such forecasts. This study, therefore, proposes the use of a purely statistical model 

in forecasting future weather conditions to circumvent these problems. This could potentially be 

useful since it could provide an alternative method for weather forecasting in the Philippines; one 

that does not rely on the results of dynamic models to do so.  

 

The primary objective of this paper is to investigate the use of a multivariate ARMA 

model in modelling Nueva Ecija weather data. Specifically, it was of interest to study the 

forecasting accuracy of the developed multivariate ARMA model. It was also of interest to 

determine the practical use of the developed forecasts by comparing its accuracy with the 

accuracy of the official PAGASA WRF forecasts. 

 

This paper concentrated on generating forecasts using the classical statistical weather 

forecasting approach. This means that the forecasts that were made in this study solely relied on 

statistical modeling and absolutely refrained from the use of any information provided by NWP 

models. The only data that was used in this study that came from NWP models is the PAGASA 



generated WRF forecasts. These forecasts were only used in this study in order to compare its 

performance to the performance of the developed multivariate ARMA model. 

 

An inherent weakness that is present for most time series models, including the one 

developed in this study, is its inaccuracy when performing long-term forecasting. Time series 

models only reproduce historical patterns of the data and may be unable to properly represent 

any significant long term changes, such as climate change, in its forecasts. As a result, this study 

is not concerned in long term forecasting and, therefore, is not broached upon.  

 

II. Overview of Methods 

 

 Two models were initially focused on in this study. The first of these models is the 

Multivariate Autoregressive (MAR) model initially developed by Matalas (1967). This model is 

simply the multivariate extension of the univariate AR (p) or the univariate ARMA (p,q) model. 

In this framework, the present value of any series is modelled as a function of its past p values as 

well as the past p and q values of other series. Due to this form, the MAR model is able to 

demonstrate the statistical relationships present among the variables and among the different 

time lags that are used in the model. However, this model assumes that each series would be 

modelled using the same p- and q- orders. Thus, it may be inappropriate to use if it is found that 

each series shall be modelled by different univariate ARMA models.  

 

 The second model that was initially focused on in this study was the multivariate ARMA 

model detailed in Salas et al. (1980). In this approach, it is assumed that not all series may be 

modelled using the same p- and q- orders of the ARMA model. This poses some difficulties in 

building the theoretical multivariate model. Instead, the results of the univariate ARIMA models 

are used and the correlations in space of the series are incorporated into the multivariate model 

through the residuals of these univariate models. Thus, this model is still able to incorporate the 

multivariate relationships present between each series but is not as functional as the MAR model 

since it is unable to include the past values of the other series as regressors.  

 

III. Methodology 

 

The data used in this study came from the weather stations maintained by PAGASA for 

the province of Nueva Ecija in the Philippines and covers the years 2001 to 2016. PAGASA has 

two weather stations in Nueva Ecija. They have one synoptic station located in Cabanatuan City 

and one agromet station located in Central Luzon State University. Precipitation, minimum, and 

maximum temperature data were taken from these two stations. Precipitation readings were 

recorded in millimeters (mm) while temperature readings were recorded in Celsius (°C). 

Observations starting from January 1, 2001 up to December 31, 2015 were used for the model 

building procedure. These observations were deseasonalized first using seasonal decomposition 

to ease the model building procedure. Meanwhile, observations starting from January 1, 2016 up 

to December 31, 2016 were withheld and were used to compute for the forecasting accuracy of 

the model. SAS and R were used to perform the statistical analysis in this paper.  

 

 For the data that was collected, it was found that the most appropriate multivariate model 

is the one detailed in Salas et al. (1980). Thus, a model of this form was fitted and forecasts for 



the year 2016 were generated from the resulting model. These forecasts coincide with the 

withheld data set and would only have a lead time of one day. These forecasts were then 

seasonalized by integrating back their seasonal indices. All temperature forecasts were then 

rounded off to the ones digit while all precipitation forecasts were rounded off to the tenths digit.  

 

 To visually inspect the performance of each set of forecasts, their time plots were 

constructed and were superimposed on the time plot of the original series. Meanwhile, numerical 

measures of forecasting accuracy were generated to quantitatively measure the accuracy of each 

model. For this, the Mean Absolute Deviation (MAD), the Residual Standard Error (RSE), the 

Mean Percentage Error (MPE), the Mean Absolute Percentage Error (MAPE), and the Mean 

Absolute Scaled Error (MASE) were computed. These measures were computed for both the 

multivariate ARMA and WRF forecasts. Further comparison of the forecasting capabilities of the 

two models was also performed. For this, the performance of the two models for yearly 

forecasting, monthly forecasting, and extreme event and non-extreme event forecasting were 

inspected. 

 

IV. Results and Discussion 

 

Yearly Forecasting 

 

To help visualize the difference in performance between the multivariate ARMA and the 

WRF models, a plot of their forecasts is given. Each graph contains three time plots: the time 

plot of the historical values of each series, the time plot of the multivariate ARMA forecasts, and 

the time plot of the WRF forecasts. These graphs are given in Figure 1.   

 

 Upon inspection of Figure 1, it can easily be seen that the forecasts of the multivariate 

ARMA model are able to follow the pattern set by the historical series. That is, its forecasts are 

generally able to follow the increases or decreases of the historical series for, roughly, the same 

time points. However, there is a limit to the volatility that the multivariate ARMA forecasts can 

reproduce. In the same figure, it is shown that the aforementioned forecasts were not able to 

properly forecast the historical series whenever there is an extreme increase or decrease in its 

value. This is especially evident when inspecting the two precipitation series since there are 

numerous sudden peaks and dips in its values. In these instances, the multivariate ARMA 

forecasts are simply not able to generate these extreme leaps in its values.   

 

  On the other hand, it can be seen that the forecasts generated by the WRF model were 

also able to generally follow the pattern of the actual series. However, it is not as good as that of 

the multivariate ARMA forecasts since there are instances where the WRF forecasts create its 

own patterns that are not in line with what has happened in the historical series. An example of 

this may be seen from the two precipitation series since the WRF forecasts differed markedly 

from the actual series. Despite this, however, it is clear that the WRF model better replicates the 

extreme variability present in the historical series as compared to the multivariate ARMA model.  

 

Based on these visual findings, it would be very hard to determine which between the two 

models is more accurate and is more precise. Thus, to help objectively determine which between 



the two models has produced a better set of forecasts, numerical measures of forecasting 

accuracy were computed. These values are given in Table 1.  

 

Inspecting the values of these numerical measures, it may be seen that the MAPE of both 

the WRF and multivariate ARMA forecasts are below 10%. This is important since, according to 

a well-established rule-of-thumb, it implies that both sets of models may be considered as good 

models. Take note that this previous statement is only applicable to the four temperature series 

since only their MAPE values may be computed. The MAPE cannot be computed for the two 

precipitation series since most of their historical values are zero. It may also be seen that the 

MASE values of the multivariate ARMA forecasts are below or are near the value of one (Table 

1). This is important since a set of forecasts whose MASE values are less than one are said to be 

better than a one-period-ahead forecast from the naïve method (Hyndman, 2006). The same 

cannot be said, however, for the WRF forecasts since the same table clearly shows that all of its 

MASE values are above one.  

 

Upon comparing the values given in Table 1, it may clearly be seen that the multivariate 

ARMA model has smaller values for almost all numerical measures. The only numerical 

measure of forecasting accuracy that is smaller for the WRF forecasts is the RSE for the 

Cabanatuan maximum temperature series. Noticeably, some of these differences may even be 

considered as substantial. For example, it may be seen that the differences in the MAPE values 

of the two sets of forecasts range from about 0.5% to about 4%. This may be considered as a 

huge disparity which could indicate a substantial difference in the errors between the 

multivariate ARMA and WRF forecasts. This then suggests that the errors of the multivariate 

ARMA forecasts are substantially lower as compared to the WRF forecasts. Thus, it may be said 

that the former set of forecasts are more accurate as compared to the latter. This claim is further 

strengthened by inspecting the MASE values of these forecasts since all multivariate ARMA 

MASE values are lower as compared to their corresponding WRF counterparts. This is especially 

true for the two precipitation series since there is a huge disparity between their MASE values.  

 

The aforementioned results also suggest that most of the multivariate ARMA errors are 

less volatile as compared to the WRF errors. This is due to the fact that most of the RSE values 

for the multivariate ARMA forecasts, a number which measures the spread of the errors, are less 

than that of the WRF forecasts which implies that they vary less. Thus, based on these two 

findings, it may be said that the multivariate ARMA forecasts are more accurate and more 

precise as compared to the WRF forecasts for the entirety of 2016. 

 

Monthly Forecasting 

 

 The information given in the previous section of this paper summarizes the forecasting 

accuracy for the whole of 2016 but does not, however, reveal any information regarding the 

monthly performance of the model. Inspecting the monthly performance of the developed model 

would be useful in practice and is, thus, performed. The results of this investigation are detailed 

in Figures 2 through 7.  

 

 Inspecting the results of this investigation, it may be seen that the majority of the 

numerical measures for the multivariate ARMA forecasts are smaller as compared to their WRF 



counterparts (Figures 2 – 7). In fact only 31 out of the 312 numerical measures were smaller for 

the WRF forecasts; 18 of which were found in the two maximum temperature series. In the 

majority of these 31 instances, it may be seen that the difference in the numerical measure values 

between the multivariate ARMA and WRF forecasts were actually minimal. This leads to the 

conclusion that, for these instances, the performance of the two sets of forecasts are comparable.  

 

 Closer inspection of the monthly numerical measures for the two maximum temperature 

series also reveals an interesting similarity (Figures 3 and 6). In both of these figures, it may be 

seen that both sets of forecasts performed comparably from the months of May to September. 

This finding is interesting since these months mainly come from the wet season of the country. 

As such, the WRF forecasts were expected to have a decisively better performance due to its 

ability to better replicate the volatility of the series; which is highest during these months. 

Nevertheless, it may be seen from these results that this was not the case.  

 

  Further study of the monthly numerical measures for the four temperature series reveals 

that the instances where the multivariate ARMA forecasts had higher numerical measure values 

are the months that have the highest monthly standard deviation values (Figures 2, 3, 5, and 6). 

The months of May, June, July, August, and September are the 2nd, 1st, 3rd, 4th, and 5th highest 

standard deviation values, respectively, for the Cabanatuan maximum temperature series. The 

months of December, January, and February are the 1st, 2nd, and 3rd highest standard deviation 

values, respectively, for the Cabanatuan minimum temperature series. The months of May, June, 

July, and September are the 3rd, 1st, 2nd, and 5th highest standard deviation values, respectively, 

for the CLSU Muñoz maximum temperature series. All of these months are where the values of 

the numerical measures for the multivariate ARMA forecasts are slightly higher as compared to 

their WRF counterparts. This hints at the possibility that, whenever high variability is expected, 

the WRF model may outperform the multivariate ARMA model.  

 

 Based on these findings, it may be concluded that the monthly multivariate ARMA 

forecasts are at least comparable to the monthly WRF forecasts; with the majority of the results 

suggesting that the former is more accurate and precise as compared to the latter. Furthermore, it 

was also found that the instances where the multivariate ARMA model was slightly 

outperformed by the WRF model were actually the months with the highest variability. This 

could indicate that, for such scenarios, the multivariate ARMA model may perform poorly. To 

determine if this is the case, the performance of the two models for forecasting extreme and non-

extreme events was investigated.  

 

Extreme and Non-Extreme Event Forecasting 

 

 For this investigation, all observations that were found to be within two standard 

deviations from the mean were deemed to be non-extreme events while the rest were deemed to 

be extreme events. For the non-extreme event case, it may be seen that all numerical measures 

are substantially lower for the multivariate ARMA forecasts, as evidenced by the disparity in 

their values, as compared to their WRF counterparts (Figure 8). From this, it may be said that the 

multivariate ARMA model was able to produce more accurate and more precise forecasts for the 

non-extreme events case as compared to the WRF model. This is unsurprising since the 



multivariate ARMA model is known to produce forecasts that generally hover around the mean 

of a series. As such, it is usually a good model for non-extreme scenarios.  

 

The results presented for the extreme case, on the other hand, are not as straightforward 

(Figure 9). The only aspect that is easily seen is that the MAPE and MASE values for the two 

sets of forecasts are more than 10% and 1.0, respectively, which indicates that the two models 

are not good extreme event models. It may even be seen that the MAPE reaches a value of about 

129%; which highlights just how bad these forecasts are for extreme events. These results, 

however, are unsurprising since these models were calibrated to account for the entire series and 

not just its extreme events. 

 

To better understand the results presented for the extreme events scenario, consider 

summarizing and grouping together all numerical measures by the series for which they belong 

to. If this was performed, it would reveal that the multivariate ARMA forecasts had a lower 

value only for the following numerical measures: (1) the MPE for the Cabanatuan minimum 

temperature series, (2) the RSE for the Cabanatuan maximum temperature series, (3) the RSE, 

MAD, MAPE, and MASE for the two precipitation series, (4) the RSE, MAD, MPE, MAPE, and 

MASE for the CLSU Muñoz minimum temperature series, and (5) none for the CLSU Muñoz 

maximum temperature series.  

 

 These results confirm an earlier conjecture that the multivariate ARMA model could 

potentially perform poorly as compared to the WRF model for instances when high variability is 

expected. This is exactly what has happened for the Cabanatuan minimum temperature series and 

the two maximum temperature series. For these three series, the majority of numerical measures 

suggest that the WRF extreme events forecasts are more accurate and are, mostly, more precise 

as compared to their multivariate ARMA counterparts. However, these results also show that this 

conjecture is not true for all cases as there are extreme event scenarios where the multivariate 

ARMA model performed better than the WRF model. 

 

What is interesting about these results is that the multivariate ARMA forecasts 

outperform their WRF counterparts for the extreme occurrences of the two precipitation series. 

For both series, four out of the five numerical measures all suggest that the multivariate ARMA 

forecasts were more accurate and precise as compared to the WRF forecasts (Figure 9). This is 

quite surprising since the WRF forecasts were expected to perform much better due to their 

ability to replicate the extreme variability of these precipitation series (i.e. the sudden peak in 

values) as compared to the multivariate ARMA model. However, as was shown by these results, 

this is not the case and, in fact, it was shown that the multivariate ARMA model had more 

accurate and precise forecasts as compared to the WRF model.  

 

Lastly, results also showed that the multivariate ARMA forecasts for the extreme events 

of the CLSU Muñoz minimum temperature series were also more accurate and more precise as 

compared to the WRF forecasts. Evidence of this may be seen in all five numerical measures as 

all five of them have lower values for the multivariate ARMA forecasts. From these findings, it 

may be said that no one model is better for forecasting the extreme events of all six series. Thus, 

these results suggest that, for extreme events, it would be best to consider both sets of forecasts 

rather than just one.  



V. Conclusion 

 

In the Philippines, the most commonly used approach to weather forecasting all revolve 

around the use of a NWP model. This paper has brought up some problems that may be 

encountered when using these types of models and, thus, proposed a possible alternative by using 

a purely statistical model. The paper proposes that certain weather conditions, such as 

temperature and precipitation, may be better forecasted by developing a model using a 

multivariate statistical approach; to be specific, by modelling them using a multivariate ARMA 

model. To study this possibility, data from Nueva Ecija was taken and was fitted with a 

multivariate ARMA model of the form given in Salas et al. (1980).  

 

The developed model was then used to produce forecasts for 2016 and its accuracy was 

compared to the accuracy of the WRF forecasts. Visually, it was shown that the multivariate 

ARMA model was better able to replicate the general pattern of the historical series but the WRF 

model was better able to replicate the variability of the historical series. Numerical measures of 

forecasting accuracy were also used to compare the two sets of forecasts. These were then 

computed for three scenarios: yearly forecasting, monthly forecasting, and extreme and non-

extreme event forecasting. Results from the yearly forecasting showed that the multivariate 

ARMA model is a good forecasting model since both its MAPE and MASE values are less than 

or near 10% and 1.0, respectively. In fact, the MAPE values of the multivariate ARMA forecasts 

only ranged from about 2.8% to about 3.2% and their MASE values only ranged from about 0.85 

to about 1.03. 

 

Results from these investigations revealed that the multivariate ARMA model generally 

had a better performance in yearly, monthly, and non-extreme event forecasting. It also revealed 

that no one model is better for forecasting extreme events for all six series. Instead, the forecast 

from both the multivariate ARMA and WRF models should be considered and should be taken 

into consideration. Overall, the results of this study suggest that the multivariate ARMA does 

have practical use for weather forecasting in the Philippines.  

 

 

 

 

 



 

 

 
Legend:         - Actual Series                      - Multivariate ARMA              - WRF  

Figure 1. Historical series along with the multivariate ARMA and WRF forecasts for minimum 

temperature (top row), maximum temperature (middle row), and precipitation (bottom row) of 

the Cabanatuan (left) and CLSU Muñoz (right) stations. 

 

 

 



Table 1. 

Measures of forecasting accuracy for the WRF and multivariate ARMA one-step ahead forecasts 

for the whole of 2016 

Series \ Measure MAD RSE MPE  MAPE MASE 

𝑍1 
1.0438 °C 

0.6713 °C 

1.2587 °C 

0.8607 °C 

2.1041% 

0.0339% 

4.3964% 

2.8340% 

1.3769 

0.8855 

𝑍2 
1.1553 °C 

0.9951 °C 

1.2489 °C 

1.3200 °C 

-2.0945% 

-0.2406% 

3.5141% 

3.0853% 

1.0662 

0.9183 

𝑍3 
9.2719 mm 

7.0079 mm 

24.5857 mm 

20.6742 mm 

N/A 

N/A 

N/A 

N/A 

1.2394 

0.9387 

𝑍4 
1.5825 °C 

0.6631 °C 

1.3640 °C 

0.8599 °C 

5.9602% 

-0.0054% 

6.9159% 

2.9018% 

2.0161 

0.8448 

𝑍5 
1.2986 °C 

1.0148 °C 

1.6442 °C 

1.3702 °C 

0.9403% 

-0.1222% 

4.1375% 

3.2345% 

1.1871 

0.9276 

𝑍6 
10.0082 mm 

6.4350 mm 

24.2795 mm 

11.6943 mm 

N/A 

N/A 

N/A 

N/A 

1.5924 

1.0307 

Legend:       - WRF Forecasts          - Multivariate ARMA Forecasts  

𝑍1- Cabanatuan minimum temperature series, 𝑍2- Cabanatuan maximum temperature series, 𝑍3- 

Cabanatuan precipitation series, 𝑍4 - CLSU Muñoz minimum temperature series, 𝑍5- CLSU 

Muñoz maximum temperature series, 𝑍6- CLSU Muñoz precipitation series 

 

 

 

 

 

 

 

 

 

 

 

 



 
 (a)                                                                 (b)                                                                

 
    (c)                                                                 (d) 

 
(e) 

Legend:        - Multivariate ARMA              - WRF  

Figure 2. Monthly MAD (a), RSE (b), MPE (c), MAPE (d), and MASE (e) values of the 

multivariate ARMA and WRF forecasts for the Cabanatuan minimum temperature series.  

 



 
  (a)                                                                 (b)                                    

 
    (c)                                                                 (d) 

 
(e) 

Legend:        - Multivariate ARMA              - WRF  

Figure 3. Monthly MAD (a), RSE (b), MPE (c), MAPE (d), and MASE (e) values of the 

multivariate ARMA and WRF forecasts for the Cabanatuan maximum temperature series.  

 



 
(a)                                                                 (b)                               

 
(c) 

Legend:        - Multivariate ARMA              - WRF  

Figure 4. Monthly MAD (a), RSE (b), and MASE (c) values of the multivariate ARMA and 

WRF forecasts for the Cabanatuan precipitation series.  

 

 

 

 

 

 

 

 

 



 
  (a)                                                                 (b)                                                               

 
    (c)                                                                 (d) 

 
(e) 

Legend:        - Multivariate ARMA              - WRF  

Figure 5. Monthly MAD (a), RSE (b), MPE (c), MAPE (d), and MASE (e) values of the 

multivariate ARMA and WRF forecasts for the CLSU Muñoz minimum temperature series.  



 
  (a)                                                                 (b) 

 
    (c)                                                                 (d) 

 
(e) 

Legend:        - Multivariate ARMA              - WRF  

Figure 6. Monthly MAD (a), RSE (b), MPE (c), MAPE (d), and MASE (e) values of the 

multivariate ARMA and WRF forecasts for the CLSU Muñoz maximum temperature series.  

 



 
(a)                                                                 (b)                                                     

 
(c) 

Legend:        - Multivariate ARMA              - WRF  

Figure 7. Monthly MAD (a), RSE (b), and MASE (c) values of the multivariate ARMA and 

WRF forecasts for the CLSU Muñoz precipitation series.  

 

 

 



 
  (a)                                                                 (b) 

 
    (c)                                                                 (d) 

 
(e)  

Legend:        - Multivariate ARMA              - WRF 

Figure 8. MAD (a), RSE (b), MPE (c), MAPE (d), and MASE (e) values of the multivariate 

ARMA and WRF forecasts for non-extreme events.  

 



 
  (a)                                                                 (b) 

 
    (c)                                                                 (d) 

 
(e) 

Legend:        - Multivariate ARMA              - WRF 

Figure 9. MAD (a), RSE (b), MPE (c), MAPE (d), and MASE (e) values of the multivariate 

ARMA and WRF forecasts for extreme events.  
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